Abstract

We propose a scheme for a phase qubit in an SIFIS junction, consisting of bulk superconductors (S), a proximity-induced ferromagnet (F), and insulating barriers (I). The qubit state is constituted by 0 and $\pi$ phase states of the junction, in which the charging energy of the junction leads to the superposition of the two states. The qubit is operated by the gate voltage applied to the ferromagnet, and insensitive to the decoherence sources existing in other superconducting qubits. We discuss a scalable scheme for qubit measurement and tunable two-qubit coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.