Abstract

Temperature- and magnetic-field dependent measurements of the resistance of ultrathin superconducting TiN films are presented. The analysis of the temperature dependence of the zero field resistance indicates an underlying insulating behavior, when the contribution of Aslamasov-Larkin fluctuations is taken into account. This demonstrates the possibility of coexistence of the superconducting and insulating phases and of a direct transition from the one to the other. The scaling behavior of magnetic field data is in accordance with a superconductor-insulator transition (SIT) driven by quantum phase fluctuations in two-dimensional superconductor. The temperature dependence of the isomagnetic resistance data on the high-field side of the SIT has been analyzed and the presence of an insulating phase was confirmed. A transition from the insulating to a metallic phase is found at high magnetic fields, where the zero-temperature asymptotic value of the resistance being equal to h/e^2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.