Abstract

Using a controlled weak-coupling renormalization group approach, we establish the mechanism of unconventional superconductivity in the vicinity of spin or charge ordered excitonic states for the case of electrons on the Bernal stacked bilayer honeycomb lattice. With one electron per site, this system, physically realized in bilayer graphene, is unstable towards a spontaneous symmetry breaking. Repulsive interactions favor excitonic order, such as a charge nematic and/or a layer antiferromagnet. We find that upon adding charge carriers to the system, the excitonic order is suppressed, and unconventional superconductivity appears in its place, before it is replaced by a Fermi liquid. We focus on firmly establishing this phenomenon using the renormalization group formalism within an idealized model with parabolic touching of conduction and valence bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call