Abstract

Here we report the observation of bulk superconductivity in single crystals of the two-dimensional kagome metal KV$_3$Sb$_5$. Magnetic susceptibility, resistivity, and heat capacity measurements reveal superconductivity below $T_c = 0.93$K, and density functional theory (DFT) calculations further characterize the normal state as a $\mathbb{Z}_2$ topological metal. Our results demonstrate that the recent observation of superconductivity within the related kagome metal CsV$_3$Sb$_5$ is likely a common feature across the AV$_3$Sb$_5$ (A: K, Rb, Cs) family of compounds and establish them as a rich arena for studying the interplay between bulk superconductivity, topological surface states, and likely electronic density wave order in an exfoliable kagome lattice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call