Abstract
We have prepared the new amorphous superconductor MoxCyGazOδ with a maximum critical temperature Tc of 3.8 K by the direct-write nano-patterning technique of focused (gallium) ion beam induced deposition (FIBID) using Mo(CO)6 as precursor gas. From a detailed analysis of the temperature-dependent resistivity and the upper critical field, we found clear evidence for proximity of the samples to a disorder-induced metal-insulator transition. We observed a strong dependence of Tc on the deposition parameters and identified clear correlations between Tc, the localization tendency visible in the resistance data and the sample composition. By an in-situ feedback-controlled optimization process in the FIB-induced growth, we were able to identify the beam parameters which lead to samples with the largest Tc-value and sharpest transition into the superconducting state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.