Abstract

We study spin fluctuation (SF) mediated superconductivity (SC) in a half-filled square lattice Hubbard model with the transfer matrices -t between nearest neighbor sites and -t' between a half of next nearest neighbor sites neighboring along only one of the <1,1> directions, considering application of this model to organic kappa-(BEDT-TTF)2X compounds. Varying the t'/t value from 0 to 1, one can interpolate between a square and an equilateral triangular lattice, the latter giving frustration to antiferromagnetically (AF) coupled spin systems. Within the fluctuation exchange (FLEX) approximation, we calculate chi(q,omega), Tc and the SC order parameter for various model parameter values and find that both AF and SC are suppressed as one approaches the frustration geometry or |(t'/t)-1| \to 0. The SC phase, however, extends beyond the AF phase boundary fairly close to t'/t=1 for realistic U/t values. The order parameter is of x2-y2-type for t'/t<1 and of xy-type for t'/t>1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call