Abstract

We explore how the superconductivity arising from the on-site electron-electron repulsion will change when the repulsion is changed to a long-ranged, 1/r-like one by introducing an extended Hubbard model with the repulsion extending to distant (12th) neighbors. With a simplified fluctuation-exchange approximation, we have found for the square lattice that (i) as the band filling becomes dilute enough, the charge susceptibility becomes comparable with the spin susceptibility, where p and then s pairings become dominant, in agreement with the result for the electron gas by Takada, while (ii) the d-wave, which reflects the lattice structure, dominates well away from the half filling. All these can be understood in terms of the spin and charge structures along with the shape and size of the Fermi surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.