Abstract

Recently a new family of Cr-based A2Cr3As3 (A = K, Rb, Cs) superconductors were reported, which own a rare quasi-one-dimensional (Q1D) crystal structure with infinite (Cr3As3)2- chains and exhibit intriguing superconducting characteristics possibly derived from spin-triplet electron pairing. The crystal structure of A2Cr3As3 is actually a slight variation of the hexagonal TlFe3Te3 prototype although they have different lattice symmetry. Here we report superconductivity in a 133-type KCr3As3 compound that belongs to the latter structure. The single crystals of KCr3As3 were prepared by the deintercalation of K ions from K2Cr3As3 crystals which were grown from a high-temperature solution growth method, and it owns a centrosymmetric lattice in contrast to the non-centrosymmetric K2Cr3As3. After annealing at a moderate temperature, the KCr3As3 crystals show bulk superconductivity at 5 K revealed by electrical resistivity, magnetic susceptibility and heat capacity measurements. The discovery of this KCr3As3 superconductor provides a different structural instance to study the exotic superconductivity in these Q1D Cr-based superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call