Abstract
Traces of superconductivity (SC) at elevated temperatures (up to 65 K) were observed by magnetic measurements in three different inhomogeneous sulfur doped amorphous carbon (a-C) systems: (a) in commercial and (b) synthesized powders and (c) in a-C thin films. (a) Studies performed on a commercial (a-C) powder, which contains 0.21% sulfur, revealed traces of non-percolated superconducting phases below Tc = 65 K. The SC volume fraction is enhanced by the sulfur doping. (b) The a-C powder obtained by pyrolytic decomposition of sucrose did not show any sign of SC above 5 K. This powder was mixed with sulfur and synthesized at 400 °C (a-CS). The inhomogeneous products obtained show traces of SC phases at Tc = 17 and 42 K. (c) Non-superconducting composite a-C-W thin films were grown by electron-beam induced deposition. SC emerged at Tc = 34.4 K only after heat treatment with sulfur. Other parts of the pyrolytic a-CS powder show unusual magnetic features. (i) Pronounced irreversible peaks around 55–75 K appear in the first zero-field-cooled (ZFC) sweep only. Their origin is not known. (ii) Unexpectedly, these peaks are totally suppressed in the second ZFC runs measured a few minutes later. (iii) Around the peak position the field-cooled (FC) curves cross the ZFC plots (ZFC > FC). These peculiar magnetic observations are also ascribed to an a-CS powder prepared from the commercial a-C powder and are connected to each other. All SC and magnetic phenomena observed are intrinsic properties of the sulfur doped a-C materials. It is proposed that the a-CS systems behave similarly to well-known high Tc curates and/or pnictides in which SC emerges from magnetic states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.