Abstract

Electrical-resistivity measurements between 1.5 K and 300 K were performed on the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glasses (BMGs) before and after annealing. Results of the superconducting transition temperature measurements are presented for the BMG Zr46.75Ti8.25Cu7.5Ni10Be27.5. The superconducting critical temperature Tc is 1.84K for the as-prepared metallic glassy sample and 3.76K for the annealed sample at zero magnetic fields. The as-prepared metallic glassy sample exhibits negative temperature coefficient of the resistivity in the temperature range from 5 to 300 K. The negative temperature coefficient of the resistivity of the as-prepared metallic glassy sample can be reasonably understood with the extended Faber-Ziman theory in terms of the diffraction model for metallic glasses if it is assumed that Zr, Ti, Cu, Ni and Be contribute 1.5, 1.5, 0.5, 0.5 and 2 conduction electrons, respectively. The R(T) of the BMG Zr46.75Ti8.25Cu7.5Ni10Be27.5 over the temperature range from 5 to 300 K was analyzed by fitting it to a polynomial using a least-squares procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.