Abstract
Inversion and time reversal are essential symmetries for the structure of Cooper pairs in superconductors. The loss of one or both leads to modifications to this structure and can change the properties of the superconducting phases in profound ways. Superconductivity in materials lacking inversion symmetry, or noncentrosymmetric materials, has become an important topic. These materials show unusual magnetic and magnetoelectric properties and can host topological superconductivity. Recently, crystal structures with local, but not global, inversion-symmetry breaking have attracted attention. Here, superconductivity can exhibit phenomena not naively expected in centrosymmetric materials. In this review, we first introduce the concept of locally noncentrosymmetric crystals and different material realizations. We then discuss consequences of such local symmetry breaking on the normal state electronic structure and the classification of superconducting order parameters. Finally, we review the expected and, in parts, already observed phenomenology of unconventional superconductivity and possible topological superconducting phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.