Abstract

The anisotropic superconductivity and the density wave have been investigated by applying the Kadanoff-Wilson renormalization group technique to the quasi-one-dimensional system with finite-range interactions. It is found that a temperature (T) dependence of response functions is proportional to exp(1/T) in a wide region of temperature even within the one-loop approximation. Transition temperatures are calculated to obtain the phase diagram of the quasi-one-dimensional system, which is compared with that of the pure-one-dimensional system. Next-nearest neighbor interactions (V_2) induce large charge fluctuations, which suppress the d_{x^2 -y^2}-wave singlet superconducting (dSS) state and enhance the f-wave triplet superconducting (fTS) state. From this effect, the transition temperature of fTS becomes comparable to that of dSS for large V_2, so that field-induced f-wave triplet pairing could be possible. These features are discussed to comprehend the experiments on the (TMTSF)_2PF_6 salt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call