Abstract

Highly compressed hydrides have been at the forefront of the search for high-Tc superconductivity. The recent discovery of record-high Tc's in H3S and LaH10±x under high pressure fuels the enthusiasm for finding good superconductors in similar hydride groups. Guided by first-principles structure prediction, we successfully synthesized ZrH3 and Zr4H15 at modest pressures (30-50 GPa) in diamond anvil cells by two different reaction routes: ZrH2 + H2 at room temperature and Zr + H2 at ∼1500 K by laser heating. From the synchrotron X-ray diffraction patterns, ZrH3 is found to have a Pm3̅n structure corresponding to the familiar A15 structure, and Zr4H15 has an I4̅3d structure isostructural to Th4H15. Electrical resistance measurement and the dependence of Tc on the applied magnetic field of the sample showed the emergence of two superconducting transitions at 6.4 and 4.0 K at 40 GPa, which correspond to the two Tc's for ZrH3 and Zr4H15.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.