Abstract

The quantization of flux quanta in superconductors is revisited and analyzed in a new geometry. The system analyzed is a superconducting wire. The geometry is such that the superconducting wire winds N times around an insulating cylinder and that the wire has its end connected back to its beginning, thus producing an N-loop short circuited solenoid. The winding number N acts as a topological index that controls flux quantization. In this case, fractional flux quanta can be measured through the center of the insulating cylinder, provided that the cylinder radius is small enough. The Little-Parks experiment for an identical geometry is discussed. The period of oscillation of the transition temperature of the wire is found to vary as 1/N in units of flux \ensuremath{\Phi} relative to the flux quantum ${\mathrm{\ensuremath{\Phi}}}_{0}$. When a SQUID is made in such a geometry the maximal current through the SQUID varies with period ${\mathrm{\ensuremath{\Phi}}}_{0}$/N. \textcopyright{} 1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.