Abstract

We report results on superconducting tunneling spectroscopy of a carbon nanotube quantum dot. Using a three-probe technique that includes a superconducting tunnel probe, we map out changes in conductance due to band structure, excited states, and end-to-end bias. The superconducting probe allows us to observe enhanced spectroscopic features, such as robust signals of both elastic and inelastic cotunneling. We also see evidence of inelastic scattering processes inside the quantum dot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.