Abstract

Recent nuclear magnetic resonance experiments measuring the Knight shift in $Sr_2RuO_4$ have challenged the widely accepted picture of chiral pairing in this superconductor. Here we study the implications of helical pairing on the superconducting state while comparing our results with the available experimental data on the upper critical field and Knight shift. We solve the Bogoliubov-de-Gennes equation employing a realistic three-dimensional tight-binding model that captures the experimental Fermi surface very well. In agreement with experiments we find a Pauli limiting to the upper critical field and, at low temperatures and high fields, a second superconducting transition. These transitions which form a superconducting subphase in the H-T phase diagram are first-order in nature and merge into a single second-order transition at a bicritical point $(T^\ast,H^\ast$), for which we find (0.8~K, 2.4~T) with experiment reporting (0.8~K, $\sim$ 1.2~T) [\textit{Phys. Rev. B} \textbf{93}, 184513 (2016)]. Furthermore, we find a substantial drop in the Knight shift in agreement with recent experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.