Abstract
Joule heat generated by resistive elements of cryogenic micro- and nanodevices often originates boiling of the cooling cryogenic liquids (helium, nitrogen). The article proposes an experimental method to explore the dynamics of the formation and development of a single vapor bubble in cryogenic liquid by sensing the temperature change of a superconducting thin-film microbridge being in the resistive state with single phase slip center or line. It serves both the source of heat for generating single bubbles and the surface temperature sensor due to its temperature-dependent excess current. The average bubble detachment rate and the average single bubble volume were experimentally determined for nucleate helium boiling. The obtained values are in good agreement with the data of other authors found in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.