Abstract
There is increasing interest in using superconducting optical photon detectors in a variety of applications. These applications require detectors that have extremely low dark count rates, high count rates, and high quantum efficiency. I will describe our work on two types of superconducting detectors, the Superconducting Nanowire Single Photon Detector (SNSPD or nSSPD) and superconducting Transition-Edge Sensor (TES). An SNSPD is an ultra-thin, ultra-narrow (nm scale) superconducting meander that is current biased just below its critical current density. When one or more photon is absorbed, a hot spot is formed that causes the superconductor to develop a resistance and consequently a voltage pulse. At NIST and JPL, we have been developing nanowire detectors using an amorphous alloy of tungsten-silicide. An example of this detector is shown in Fig 1(a). In this case, there are two tungsten silicide layers separated by a dielectric layer to optimize detection of light for any polarization[1]. Fig 1(b) is an example of a TES detector with gold cooling fins to enhance timing of the detector[2]. By exploiting the sharp superconducting-to-normal resistive transition of tungsten at 100mK, TES detectors give an output signal that is proportional to the cumulative energy in an absorption event. This proportional pulse-height enables the determination of the energy absorbed by the TES and the direct conversion of sensor pulse-height into photon number. I will discuss our progress towards developing both types of detectors with quantum efficiencies approaching 100%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.