Abstract

The set of known single-atomic-layer (SAL) superconductors has been limited so far by a few examples, including Si(111)-hex-7×3-In reconstruction, Si(111)-SIC-Pb and -HIC-Pb phases, and Si(111)3×3-(Tl, Pb) compound phase. In the present study where transport properties of SAL compounds of Tl-Pb with different composition ratios on Ge(111) and Si(111) substrates have been studied in situ in ultrahigh vacuum, the list of SAL superconductors has been enlarged by three new members, Ge(111)3×3(Tl, Pb), Ge(111)3×3-(Tl, Pb), and Si(111)4×4-(Tl, Pb) systems which show superconducting transition at the critical temperatures of 2.03 K, 0.83 K and 0.79 K, respectively. Bearing in mind that the atomic arrangements and electronic band structures of these SAL compounds of Tl-Pb have already been established, the obtained data set is believed to constitute a solid basis for the prospective theoretical investigations on the nature of SAL superconductivity. In addition, all the new systems demonstrate a noticeable Rashba-type spin splitting in the metallic surface-state bands and, therefore, they might be promising materials for future superconducting spintronics as well as for basics research of exotic superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.