Abstract

Van-der-Waals assembly enables the fabrication of novel Josephson junctions featuring an atomically sharp interface between two exfoliated and relatively twisted Bi_{2}Sr_{2}CaCu_{2}O_{8+x} (Bi2212) flakes. In a range of twist angles around 45°, the junction provides a regime where the interlayer two-Cooper pair tunneling dominates the current-phase relation. Here we propose employing this novel junction to realize a capacitively shunted qubit that we call flowermon. The d-wave nature of the order parameter endows the flowermon with inherent protection against charge-noise-induced relaxation and quasiparticle-induced dissipation. This inherently protected qubit paves the way to a new class of high-coherence hybrid superconducting quantum devices based on unconventional superconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call