Abstract

We reconsider the problem of the superconducting proximity effect in a diffusive ferromagnet bounded by tunneling interfaces, using spin-dependent boundary conditions. This introduces for each interface a phase-shifting conductance Gphi which results from the spin dependence of the phase shifts acquired by the electrons upon scattering on the interface. We show that Gphi strongly affects the density of states and supercurrents predicted for superconducting/ferromagnetic hybrid circuits. We show the relevance of this effect by identifying clear signatures of Gphi in the data of T. Kontos et al [Phys. Rev. Lett. 86, 304 (2001), ibid. 89, 137007 (2002)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.