Abstract

The three-dimensional penetration method combined with semi-solid casting (SS-3DPC) was utilized to prepare magnesium diboride (MgB2) powder composite materials with various host materials of Mg, Mg-3%Al, Mg-3%Al-1%Zn, Mg-9%Al, and Mg-9%Al-1%Zn. X-ray diffraction measurements indicated predominant peak patterns of MgB2 and a host alloy, implying that the host material tightly bonded MgB2 grains without melting the MgB2 powder. This was confirmed by SEM images. Measured electrical resistivity and magnetization versus temperature showed clear signals of superconducting transition temperature of 27∼38 K for all the samples cut out from the billets. Magnetic hysteresis loop observed at 5 K enabled us to estimate a critical current density (Jc) based on the extended Bean model. Additions of aluminum and zinc elements to magnesium host-matrix were found to enhance Jc and increase residual resistivity (ρ0) suggesting that aluminum and zinc have an effect on pinning magnetic flux flow for Jc enhancement, and scattering conduction electrons for increase of ρ0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.