Abstract

At 80 GPa, phases with the PH2 stoichiometry, which are composed of simple cubic like phosphorus layers capped with hydrogen atoms and layers of H2 molecules, are predicted to be important species contributing to the recently observed superconductivity in compressed phosphine. The electron-phonon coupling in these phases results from the motions of the phosphorus atoms and the hydrogen atoms bound to them. The role of the mobile H2 layers is to decrease the Coulomb repulsion between the negatively charged hydrogen atoms capping the phosphorus layers. An insulating PH5 phase, the structure and bonding of which is reminiscent of diborane, is also predicted to be metastable at this pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.