Abstract

Superconductivity and Anderson localization represent two extreme cases of electronic behavior in solids. Surprisingly, these two competing scenarios can occur in the same quantum system, e.g., in an amorphous superconductor. Although the disorder-driven quantum phase transition has attracted much attention, its structural origins remain elusive. Here, we discovered an unambiguous correlation between superconductivity and density in amorphous Sb_{2}Se_{3} at high pressure. Superconductivity first emerges in the high-density amorphous (HDA) phase at about 24GPa, where the density of glass unexpectedly exceeds its crystalline counterpart, and then shows an enhanced critical temperature when pressure induces crystallization at 51GPa. Abinitio simulations reveal that the bcc-like local geometry motifs form in the HDA phase, arising from distinct "metavalent bonds." Our results demonstrate that HDA phase is critical for the incipient superconductive behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.