Abstract

The next generations of cosmic microwave background (CMB) instruments will be dedicated to the detection and characterisation of CMB B-modes. To measure this tiny signal, instruments need to control and minimise systematics. Signal modulation is one way to achieve such a control. New generation of focal planes will include the entire detection chain on chip. In this context, we present a superconducting coplanar switch driven by DC current. It consists of a superconducting micro-bridge which commutes between its on (superconducting) and off (normal metal) states, depending on the amplitude of the current injection. To be effective, we have to use a high normal state resistivity superconducting material with a gap frequency higher than the frequencies of operation (millimeter waves). Several measurements were made at low temperature on NbN and yielded very high resistivities. Preliminary results of components dc behavior is shown. Thanks to its low power consumption, fast modulation and low weight, this component is a perfect candidate for future CMB space missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.