Abstract

Superconducting nanowire single photon detector (SNSPD) has been widely used in many fields such as quantum computing, quantum key distribution and laser radar, due to its high detection efficiency, low dark count rate, high counting rate, and low timing jitter. In most cases, the SNSPD works under the DC-bias mode that can detect single photons arrived at any time. In some cases such as satellite laser ranging and single-photon laser radar where the light pulses arrive regularly, the AC-bias mode enables the SNSPD to work with higher counting rates and lower background dark counts, which however requires complicated readout due to the low signal-to-noise ratio of the photon response. In this work, we report on an AC-biased SNSPD system with a self-differential readout circuit. The system includes a 2-pixel SNSPD consisting of two parallel nanowires, which are biased with 100 MHz sinusoidal current. The output signals of these two nanowires are amplified and combined for the differential readout of the photon response. The resulting response pulse possesses a signal-to-noise ratio ten times higher than that extracted before self-differential readout. In addition, the dark counts are reduced by a factor of 4, and the count rates are increased by a factor of 1.5, in comparison with those under the DC-bias mode. This work provides a specific method to read out the AC-biased SNSPD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.