Abstract

All-refractory material superconducting millimeter-wave oscillators have been designed and investigated experimentally with different superconductor-insulator-superconductor (SIS) mixers integrated on the same chip. Tested structures include a flux-flow oscillator (FFO) based on a long Josephson junction, a coupling section, and an SIS detector with tuned out junction capacitance. Coupling sections were designed as multistep microstrip quarter-wave impedance transformers. All junctions have been fabricated on the basis of a high-quality trilayer Nb-AlO/sub x/-Nb process. Microwave oscillations in the frequency range 75-500 GHz have been detected experimentally. The level of delivered power was estimated from the pumped I-V curve of the strongly coupled single junction detector. Coupled power levels higher than 0.1 mu W at 256 GHz were achieved. A spectral linewidth of the FFO of less than 1 MHz has been estimated experimentally. The first attempt to create an integrated receiver based on an FFO and an SIS array mixer integrated on the same chip was made in the 2-mm wavelength band.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call