Abstract
ABSTRACTSince the coherence length is of order 50 Å to 1 μm, it is possible to alternately layer thin films of a superconductor with another material to affect the physical properties of the resulting superlattice. A brief description of our sputtering technique used to prepare superlat t ices consisting of Nb/Cu and Ta/Mo is given. Optical interferometry, x-ray diffraction and ion beam analysis techniques independently confirm that control of ±0.3% is achieved over the amount of material deposited in each layer. Results of a study of Josephson tunneling to Nb/Cu metallic super lattices are reviewed. These measurements enable a determination of the London penetration depth to be made as a function of superlattice layer thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.