Abstract

Energy storage devices experience load fluctuations due to fault currents, lightening and non-uniform load distribution. Hence, Superconducting Magnetic Energy Storage (SMES) devices are incorporated to balance these fluctuations as well as to store the energy with larger current density. Further, Superconducting Fault Current Limiter (SFCL) are integrated with SMES for avoiding fault currents. In addition, SFCL are preferred in electrical utility networks due to their better technical performance during faults as compared to the conventional Circuit Breakers. Self-triggering from superconducting state to normal state during fault and very fast recovery to its original superconducting state after fault removal is the fundamental operation of Resistive type Superconducting Fault Current Limiter (R-SFCL). Moreover, commercial applications of SFCL in electrical power systems are enormously increasing due to the availability of long length High Temperature Superconducting (HTS) tapes.In the present work, an algorithm is developed to estimate the recovery time of R-SFCL with three phases to be used in SMES. Further, the electrical and thermal strategies to develop R-SFCL are also presented. In addition, the short circuit behaviour under fault currents is investigated considering 440kV/1.2kA capacity line. Finally, the percentage of fault compensation in all the three phases of SMES integrated with R-SFCL is calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.