Abstract

The low-temperature thermodynamics of the one-dimensional Hubbard model with attractive on-site interaction of the electrons is discussed within the framework of the Bethe ansatz for the wave function. At low T the dominant states consist of spin-paired electrons (Cooper-pair-like) and excitations of such pairs (without breaking up the singlet bound states). A critical field Hc (energy required to depair a Cooper pair) is obtained at T=0 (note that the superconducting Tc =0), which disappears for T≠0. There is no magnetic response at T=0 for H<Hc . The one-electron correlation function falls off exponentially with distance, while the singlet pair–singlet pair correlation decreases with a power law. The specific heat is linear in temperature, which is possibly a consequence of the dimension. The elementary excitations of the system are discussed. The excitation spectrum shows some analogies to that of resonant valence bonds in two dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.