Abstract

Layered superconductors such as the copper-oxide high-temperature superconductor Bi2Sr2CaCu2O8+δ are emerging as compact sources of coherent continuous-wave electromagnetic radiation in the subterahertz and terahertz frequency ranges. The basis of their operation is the Josephson effect, which intrinsically occurs between the superconducting layers. The Josephson effect naturally converts a direct-current voltage into a high-frequency electric current. Therefore, a unique property of the devices reviewed here is the wide tunability of their frequency by varying the bias voltage. Recently, emission powers of free-space radiation of several hundreds of microwatts and emission linewidths as low as 6 MHz at 600 GHz have been achieved. These devices are promising for new applications in imaging, medical diagnostics, spectroscopy and security. Recent progress on terahertz-emission devices based on the high-temperature superconductor Bi2Sr2CaCu2O8+δ is reviewed. The emission mechanism is explained as a result of collective resonant modes in a stack of intrinsic Josephson junctions. Remarkable features of the linewidth, tunability, the optimum bias condition and the thermal influence are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call