Abstract
High-resolution superconducting quantum interference device isothermal magnetization measurements in Al-doped Sm-based superconducting cuprates are presented, at the aim to analyze the properties of the underdoped, pseudogapped phase in regards of the superconducting fluctuations (SF) above ${T}_{\text{c}}$. In the optimally doped compound, the SF are well described by the conventional Ginzburg-Landau (GL) free-energy functional for three-dimensional anisotropic systems. On the contrary, in the underdoped compounds, obtained by Al for in-chain Cu substitution at constant oxygen content, dramatic differences are detected. The isothermal curves ${M}_{\text{dia}}$ above ${T}_{\text{c}}$ show an upturn field ${H}_{\text{up}}$, where $|{M}_{\text{dia}}|$ starts to decrease on increasing field. ${H}_{\text{up}}$ is found to increase on increasing temperature. The experimental data on the field dependence of the diamagnetic magnetization above ${T}_{\text{c}}$ can be justified by transforming the GL-Lawrence-Doniach functional into the one for a layered system of vortices with frozen amplitude of the order parameter but with strong phase fluctuations. It is argued that this behavior is characteristic of the underdoped phase of the cuprates, thus providing insights on the pseudogapped phase as accompanied by fluctuations in the phase of order parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.