Abstract

We consider a fractional quantum Hall bilayer system with an interface between quantum Hall states of filling fractions (ν_{top},ν_{bottom})=(1,1) and (1/3,2), motivated by a recent approach to engineering artificial edges [Y. Ronen et al., Nat. Phys. 14, 411 (2018)NPAHAX1745-247310.1038/s41567-017-0035-2]. We show that random tunneling and strong repulsive interactions within one of the layers will drive the system to a stable fixed point with two counterpropagating charge modes which have attractive interactions. As a result, slowly decaying correlations on the edge become predominantly superconducting. We discuss the resulting observable effects and derive general requirements for electron attraction in Abelian quantum Hall states. The broader interest in fractional quantum Hall edge with quasi-long-range superconducting order lies in the prospects of hosting exotic anyonic boundary excitations, which may serve as a platform for topological quantum computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.