Abstract

Chevrel ternary superconductors show an intriguing coexistence of molecular aspects, large electron-phonon and electron-electron correlations, which to some extent still impedes their quantitative understanding. We present a first principles study on the prototypical Chevrel compound PbMo$_{6}$S$_{8}$, including electronic, structural and vibrational properties at zero and high pressure. We confirm the presence of an extremely strong electron-phonon coupling, linked to the proximity to a R$\overline{3}$-P$\overline{1}$ structural phase transition, which weakens as the system, upon applied pressures, is driven away from the phase boundary. A detailed description of the superconducting state is obtained by means of fully \textit{ab initio} superconducting density functional theory (SCDFT). SCDFT accounts for the role of phase instability, electron-phonon coupling with different intra- and inter-molecular phonon modes, and without any empirical parameter, and accurately reproduces the experimental critical temperature and gap. This study provides the conclusive confirmation that Chevrel phases are phonon driven superconductors mitigated, however, by an uncommonly strong Coulomb repulsion. The latter is generated by the combined effect of repulsive Mo states at the Fermi energy and a band gap in close proximity to the Fermi level. This is crucial to rationalize why Chevrel phases, in spite of their extreme electron-phonon coupling, have critical temperatures below 15~K. In addition, we predict the evolution of the superconducting critical temperature as a function of the external pressure, showing an excellent agreement with available experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.