Abstract

We present here the design and characterization of an intermediate frequency (IF) assembly comprising a compact 90° hybrid chip (coupled line coupler - Lange coupler- coupled line coupler), two bias-T circuits for biasing the superconductor-insulator-superconductor (SIS) mixers, and two transmission-line circuits. Specifically, the miniaturized three-section hybrid chip fabricated using thin-film technology utilizes superconducting Niobium (Nb) transmission lines, air bridges to connect the fingers of the Lange coupler (middle section), and is complemented with two bias-T circuits with integrated MIM capacitors. The assembly was designed to ensure amplitude and phase imbalances better than 0.6 dB and ±2°, respectively. Experimental verification of the assembly at 4 K shows good agreement between the measurements and simulations with amplitude imbalance of 0.5 dB and maximum phase imbalance of ±2°. The ALMA band-5 (163-211 GHz) receiver will include such assembly. The receiver tests shows sideband rejection ratio better than 15 dB over the entire RF band, i.e., a systematic improvement of 3-9 dB as compared with the previously reported results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.