Abstract

A method of nondestructive ultrasound tomographic imaging employing a rotating transducer system is proposed. The rotating transducer system increases the number of emitters and detectors in a tomographic scheme by several times and makes it possible to neutralize image artifacts resulting from incomplete-data tomography. The inverse problem of tomographic reconstructing the velocity structure inside the inspected object is considered as a nonlinear coefficient inverse problem for a scalar wave equation. Scalable iterative algorithms for reconstructing the longitudinal wave velocity inside the object are discussed. The methods are based on the explicit representation for the gradient of the residual functional. The algorithms employ parallelizing the computations over emitter positions. Numerical simulations performed on the “Lomonosov-2” supercomputer showed that the tomographic methods developed can not only detect boundaries of defects, but also determine the wave velocity distribution inside the defects with high accuracy provided that both reflected and transmitted waves are registered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.