Abstract

In this review we examine early and recent evidence for an aggregated organization of the mitochondrial respiratory chain. Blue Native Electrophoresis suggests that in several types of mitochondria Complexes I, III and IV are aggregated as fixed supramolecular units having stoichiometric proportions of each individual complex. Kinetic evidence by flux control analysis agrees with this view, however the presence of Complex IV in bovine mitochondria cannot be demonstrated, presumably due to high levels of free Complex. Since most Coenzyme Q appears to be largely free in the lipid bilayer of the inner membrane, binding of Coenzyme Q molecules to the Complex I-III aggregate is forced by its dissociation equilibrium; furthermore free Coenzyme Q is required for succinate-supported respiration and reverse electron transfer. The advantage of the supercomplex organization is in a more efficient electron transfer by channelling of the redox intermediates and in the requirement of a supramolecular structure for the correct assembly of the individual complexes. Preliminary evidence suggests that dilution of the membrane proteins with extra phospholipids and lipid peroxidation may disrupt the supercomplex organization. This finding has pathophysiological implications, in view of the role of oxidative stress in the pathogenesis of many diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.