Abstract

In this paper we study the supercloseness property of the linear discontinuous Galerkin (DG) finite element method and its superconvergence behavior after post-processing by the polynomial preserving recovery (PPR). The error estimate with explicit dependence on the wave number k, the penalty parameter $$\mu $$ and the mesh condition parameter $$\alpha $$ is derived. We prove the supercloseness between the DG finite element solution and the linear interpolation and the superconvergence for the recovered gradient by the PPR under the assumption $$k(kh)^2\le C_0$$ (h is the mesh size) and certain mesh conditions. Furthermore, we estimate the error between the DG numerical gradient and recovered gradient, which motivates us to define the a posteriori error estimator and design a Richardson extrapolation to post-process the recovered gradient by PPR. Finally, some numerical examples are provided to confirm the theoretical results of superconvergence analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.