Abstract

AbstractChemical vapor deposition (CVD) has become a promising approach for the industrial production of graphene films with appealing controllability and uniformity. However, in the conventional hot‐wall CVD system, CVD‐derived graphene films suffer from surface contamination originating from the gas‐phase reaction during the high‐temperature growth. Shown here is that the cold‐wall CVD system is capable of suppressing the gas‐phase reaction, and achieves the superclean growth of graphene films in a controllable manner. The as‐received superclean graphene film, exhibiting improved optical and electrical properties, was proven to be an ideal candidate material used as transparent electrodes and substrate for epitaxial growth. This study provides a new promising choice for industrial production of high‐quality graphene films, and the finding about the engineering of the gas‐phase reaction, which is usually overlooked, will be instructive for future research on CVD growth of graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.