Abstract

BackgroundAntibiotic resistome has been found to strongly interact with the core microbiota in the human gut, yet little is known about how antibiotic resistance genes (ARGs) correlate with certain microbes in large rivers that are regarded as “terrestrial gut.”ResultsBy creating the integral pattern for ARGs and antibiotic-resistant microbes in water and sediment along a 4300-km continuum of the Yangtze River, we found that human pathogen bacteria (HPB) share 13.4% and 5.9% of the ARG hosts in water and sediment but contribute 64% and 46% to the total number of planktonic and sedimentary ARGs, respectively. Moreover, the planktonic HPB harbored 79 ARG combinations that are dominated by “natural” supercarriers (e.g., Rheinheimera texasensis and Noviherbaspirillum sp. Root189) in river basins.ConclusionsWe confirmed that terrestrial HPB are the major ARG hosts in the river, rather than conventional supercarriers (e.g., Enterococcus spp. and other fecal indicator bacteria) that prevail in the human gut. The discovery of HPB as natural supercarriers in a world’s large river not only interprets the inconsistency between the spatial dissimilarities in ARGs and their hosts, but also highlights the top priority of controlling terrestrial HPB in the future ARG-related risk management of riverine ecosystems globally.6u6QpCcS-1-wBk7XbSx_AmVideo

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.