Abstract
Due to their highly changeable porosity and adaptable skeletons, covalent organic frameworks (COFs) have been frequently used in supercapacitors. Additionally, COFs are a wonderful match for supercapacitors’ requirements for quick carrier migration and ion catalysis. COFs exhibit significant potential and limitless opportunities in electrochemical storage supercapacitors. The applicability of COFs has, nonetheless, been limited because the primary organic component prevents electron conduction and the interior active sites are challenging to fully utilize. The conductivity enhancement of COFs has been the subject of extensive research to solve these challenges. This review begins by outlining the features of COFs in the context of their use in supercapacitors and their methods of synthesis. The application of previously published COF materials in supercapacitors were evaluated including electrode materials and solid-state devices. Finally, essential aspects and potential problems are discussed as the exceptional performance characteristics of COFs are illustrated from a supercapacitor standpoint. This review also forecasts the future of COF-based supercapacitor development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.