Abstract

Arrays of vertically aligned carbon nanotubes (CNTs) grown on n-doped silicon substrates using an aerosol-assisted catalytic chemical vapor deposition (CCVD) technique have been tested as supercapacitor electrodes. Electrochemical properties of the electrodes were shown to be significantly dependent on the array thickness. At scan rate of 20mV/s the largest specific capacitance of 124 F/g was achieved for the ∼280–μm array, while increase in the thickness to ∼ 1100μm caused a drop in electrode capacitance by four times. It was shown that in a sulfuric acid electrolyte, the redox processes with iron nanoparticles encapsulated in CNTs contribute significantly to the capacitance of array. From the Mössbauer spectroscopy, these nanoparticles are present as α-Fe, γ-Fe, and Fe3C phases. X-ray photoelectron spectroscopy revealed that during the electrode charging and discharging sulfates of Fe(II) and Fe(III) are formed in surficial layers of the nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call