Abstract

A novel approach to improve the specific capacitance of reduced graphene oxide (rGO) films is reported. We combine the aqueous dispersion of liquid-crystalline GO incorporating salt and urea with a blade-coating technique to make hybrid films. After drying, stacked GO sheets mediated by solidified NaCl and urea are hydrothermally reduced, resulting in a nanoporous film consisting of rumpled N-doped rGO sheets. As a supercapacitor electrode, the film exhibits a high gravimetric specific capacitance of 425 F g-1 and a record volumetric specific capacitance of 693 F cm-3 at 1 A g-1 in 1 M H2SO4 aqueous electrolyte when integrated into a symmetric cell. When using Li2SO4 aqueous electrolyte, which can extend the potential window to 1.6 V, the device exhibits high energy densities up to 35 Wh kg-1, and high power densities up to 104 W kg-1. This novel strategy to intercalate solidified chemicals into stacked GO sheets to functionalize them and prevent them from restacking provides a promising route toward supercapacitors with high specific capacitance and energy density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.