Abstract

Abstract Highly ordered titania nanotube arrays were synthesised on titanium metal foil through electrochemical anodisation. The annealed samples were characterised through scanning electron microscopy and X-ray diffraction analysis. The electrochemical characterisations of the arrays were done through cyclic voltammetry, galvanostatic charge discharge and electrochemical impedance spectroscopy analyses. The titania nanotube arrays exhibited a specific capacitance of 6.8 mF cm–2 at 5 mV s–1 scan rate, which is very much higher than that reported earlier. Pseudocapacitive metal oxides were deposited on these arrays forming composite supercapacitor electrodes and their supercapacitor properties were compared with same deposited on bare titanium foil substrates. Pseudocapacitive metal oxides deposited on these titania nanotube array substrates exhibited improved supercapacitor performance and stability over the same deposited on titanium foil substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call