Abstract

We report the synthesis of pure and Fe doped SnS nanoparticles through the solvothermal method. Fe with different contents (0, 2, 4, and 6 %) were doped in SnS and designated as N1, N2, N3 and N4, respectively. The samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Cyclic voltammetry (CV), Charging/discharging (GCD) and Vibrating sample magnetometer (VSM) analysis. XRD patterns confirm that N 1, N2, N3, and N4 samples form an orthorhombic crystal structure. Based on the FT-IR and Raman results, a minor stretching vibration in Sn-S modes was observed in pure SnS and Fe doped SnS samples. SEM study shows samples exhibit ball-like spherical shapes, while the average particle size calculated from TEM images shows sizes between 25 and 30 nm. XPS confirm the chemical composition and binding energy of pure and Fe-doped SnS. Specific capacitance values for pure N1 electrode 419 F/g increases to 1242 F/g with Fe (%) doping which shows that doping has enhanced the electrochemical performance of SnS nanoparticles. The optimized assembled supercapacitor shows a high energy density of 34 Wh kg−1 at a power density of 3214 W kg−1 and owed 98.5 % columbic efficiency with 94.2 % capacitance retention after 5000 cycles. Room temperature Hysteresis measurement show samples exhibit weak ferromagnetism and the saturation magnetization increases with Fe doping. Magnetic studies suggest samples have the potential for data storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.