Abstract

Photo-transduction of solid-state optoelectronics occurs in semiconductors or their interfaces. Considering the confined active area and interfacial capacitance of solid-state materials, solid-state optoelectronics faces inherent limitations in photo-transduction, especially for bionic vision, and the performance is lower than that of living systems. For example, a photoreceptor generates pA-level photocurrent when absorbing a single photon. Here, a liquid-solid dual-state phototransistor is demonstrated, in which photo-transduction and modulation take place at the microporous interface between semiconductors and water, mimicking principles of the photoreceptor. When operating in the water, an orderly stacked photo-harvesting covalent organic framework layer generates supercapacitively photogating modulation of the channel conductivity via a dual-state interface, achieving responsivity of 4.6×1010 AW-1 and detectivity of 1.62×1016 Jones at room temperature, several orders of magnitude higher than other photodetectors. Such bio-inspired dual-state optoelectronics enables high-contrast scotopic neuromorphic imaging with responsivity greater than photoreceptors, holding promise for constructing optoelectronic systems with performance beyond conventional solid-state optoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.