Abstract

Nanoporous carbon nanofibers (CNFs) are produced by incorporating tetraethyl orthosilicate (TEOS) into polyacrylonitrile (PAN) via electrospinning, and their electrochemical properties are investigated as an electrode in supercapacitors. TEOS is used as a pore generator in the PAN-based precursor for the CNFs with stabilized Si-related functional structures. The microstructures (e.g., nanometer-size diameters, high specific surface areas, narrow pore size distributions, and tunable porosities) and some of the surface functionalities of the CNFs are affected by the TEOS concentration. The electrode with these characteristics demonstrates better supercapacitor performance in terms of capacitance, energy, and power efficiency, which is attributed to the synergistic effect between the double-layer capacitance and the pseudo-capacitive effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.