Abstract
Graphene oxide/CoAl-layered double hydroxide (GO/CoAl-LDHs) composites were successfully prepared by a face-to-face electrostatic self-assembly method. Positively charged colloidal CoAl-LDHs nanosheets (CoAl-LDH-NS) and negatively charged colloidal GO nanosheets were uniformly mixed; then CoAl-LDH-NS were assembled on GO nanosheets via electrostatic attraction to prepare GO/CoAl-LDHs composites. The GO/CoAl-LDHs composites were then transformed to the reduced graphene oxide/CoAl-layered double hydroxide (RGO/CoAl-LDHs) composites with a hydrothermal method. The results showed that the content of RGO has a remarkable influence on the capacitive properties of composites. Among the composites with different RGO content, the RGO/CoAl-LDHs composite containing 12.0 wt% RGO displayed a maximum specific capacitance of 825 F g−1 at low current density of 1 A g−1, while that of pure CoAl-LDHs was 552 F g−1. The capacitance retention of the RGO/CoAl-LDHs composite from 1 A g−1 to 8 A g−1 is found to be 62.3%, whereas that of pure CoAl-LDHs is only 31.9%. Face-to-face self-assembling between positively charged CoAl-LDH-NS and negatively charged GO nanosheets can effectively reduce the self-agglomeration of GO nanosheets and avoid CoAl-LDH-NS stacking together, which lead to improvement of the capacitive performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.