Abstract

Superbanana and superbanana plateau transport processes are critical to plasma confinement in tokamaks with broken symmetry. The transport is caused by the superbanana resonance, which occurs at a pitch angle that makes the toroidal drift speed vanish, i.e. the tips of the superbananas. The physics consequences of the resonance on the symmetry breaking induced toroidal momentum damping and on the energetic alpha particle transport have been demonstrated using large aspect ratio expansion. Here, the existing theory for the superbanana and superbanana plateau transport is extended for finite aspect ratio tokamaks with broken symmetry. The effects of finite plasma β, and magnetic field shear are naturally included. Here, β is the ratio of the thermal plasma pressure to the magnetic field pressure. The explicit expressions for the transport fluxes in these regimes in terms of the equilibrium quantities are presented. It is shown that the main effects are to modify the resonance function G(k) and the expression for the pitch angle parameter k in the existing theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call