Abstract

Based on density-functional calculation and genetic algorithm structure search, we propose a series of 16-coordinate core-shell clusters: M@Li(16)(M = Ca, Sr, Ba, Ti, Zr, Hf). A tetrahedral (T(d)) structure with an outer shell of 16 lithium atoms and one enclosed heavy atom is found to be the global minimum in the structural exploration of BaLi(16) based on genetic algorithm. This structure also has lower energy compared to the other isomers we employed in all the MLi(16) clusters. In this structure, the atoms are bonded together by metallic bonds with alkali (IA) and alkaline-earth (IIA) metal atoms. Their corresponding first electronic shells are closed with significant energy gaps because their total numbers of valence electrons fulfil the 18-electron rule. Such a combination could be extended to 20-electron systems by enclosing IVB elements. With simple valence electrons and highly symmetric structures, superatomic molecular orbitals are identified in all of the T(d) clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.